Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(27): e202304773, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37140400

RESUMO

Carrier transport is an equally decisive factor as carrier separation for elevating photocatalytic efficiency. However, limited by indefinite structures and low crystallinities, studies on enhancing carrier transport of organic photocatalysts are still in their infancy. Here, we develop an σ-linkage length modulation strategy to enhance carrier transport in imidazole-alkyl-perylene diimide (IMZ-alkyl-PDI, corresponding to D-σ-A) photocatalysts by controlling π-π stacking distance. Ethyl-linkage can shorten π-π stacking distance (3.19 Å) the most among IMZ-alkyl-PDIs (where alkyl=none, ethyl, and n-propyl) via minimizing steric hindrance between D and A moieties, which leads to the fastest carrier transport rates. Thereby, IMZ-ethyl-PDI exhibits remarkable enhancement in phenol degradation with 32-fold higher rates than IMZ-PDI, as well as the oxygen evolution rate (271-fold increased). In microchannel reactors, IMZ-ethyl-PDI also presents 81.5 % phenol removal with high-flux surface hydraulic loading (44.73 L m-2 h-1 ). Our findings provide a promising molecular design guideline for high-performance photocatalysts and elucidate crucial internal carrier transport mechanisms.

2.
Angew Chem Int Ed Engl ; 62(11): e202217897, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36639933

RESUMO

High-efficiency photocatalysts based on metal-organic frameworks (MOFs) are often limited by poor charge separation and slow charge-transfer kinetics. Herein, a novel MOF photocatalyst is successfully constructed by encapsulating C60 into a nano-sized zirconium-based MOF, NU-901. By virtue of host-guest interactions and uneven charge distribution, a substantial electrostatic potential difference is set-up in C60 @NU-901. The direct consequence is a robust built-in electric field, which tends to be 10.7 times higher in C60 @NU-901 than that found in NU-901. In the catalyst, photogenerated charge carriers are efficiently separated and transported to the surface. For example, photocatalytic hydrogen evolution reaches 22.3 mmol g-1 h-1 for C60 @NU-901, which is among the highest values for MOFs. Our concept of enhancing charge separation by harnessing host-guest interactions constitutes a promising strategy to design photocatalysts for efficient solar-to-chemical energy conversion.

3.
Angew Chem Int Ed Engl ; 61(45): e202212243, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36124855

RESUMO

The insufficient charge separation and sluggish exciton transport severely limit the utilization of polymeric photocatalysts. To resolve the above issues, we incorporate bountiful carboxyl substituents within a novel benzodiimidazole oligomer and assemble it into a crystalline semiconductor. The photocatalyst is polar, hydrophilic, short-range crystalline, and capable of both hydrogen and oxygen evolution. The introduction of carboxyl side-groups adds asymmetry to the local structure and increases the built-in electric field. Further, accelerated carrier transfer is enabled via the short-range crystallinity. The superior hydrogen and oxygen production rates of 18.63 and 2.87 mmol g-1 h-1 represent one of the best performances ever reported among dual-functional polymeric photocatalysts. Our work initiates studies on high-performance oligomer photocatalysts, opening a new frontier to produce solar fuel.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35914049

RESUMO

Temperature changes are a major challenge in outdoor guided wave structural health monitoring of rails. Temperature variations greatly impact the waveform of guided wave signals, making it challenging to diagnose and characterize defects. Traditional temperature compensation methods, such as signal stretch and scale transform, are restricted to use in regular structures, such as plates and pipes. To solve the temperature compensation problem in long rails with serious mode conversion and complex structure echo, we propose a temperature compensation and defect monitoring method, namely, sliding window dynamic time-series warping (SWDTW), which overcomes the challenges of mass computation and overcompensation of dynamic time-series warping (DTW). The basic idea of SWDTW is to utilize sliding windows to accelerate the computation and identify defects from subsequence scales. Then, an index, window subsequence Teager energy (WSTE), is used to indicate the local abnormality of guided wave signals, and a sliding window net (SWnet) is devised to monitor the occurrence of defects automatically. Outdoor monitoring of turnout rails showed that the proposed method can effectively reduce the temperature noise and recognize an artificial defect with 1.16% and 0.36% cross-sectional change rates (CSCRs) on the switch and stock rails, respectively, at different temperatures; moreover, the defect signals processed by SWDTW showed better defect identification performance than those processed by scale transform and DTW.


Assuntos
Ondas Ultrassônicas , Ultrassom , Estudos Transversais , Temperatura , Fatores de Tempo
5.
ACS Cent Sci ; 7(10): 1698-1706, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34729413

RESUMO

Mechanically interlocked molecules (MIMs) with discrete molecular components linked through a mechanical bond in space can be harnessed for the operation of molecular switches and machines, which shows huge potential to imitate the dynamic response of natural enzymes. In this work, rotaxane compounds were adopted as building monomers for the synthesis of a crown-ether ring mechanically intercalated covalence organic framework (COF). This incorporation of MIMs into open architecture implemented large amplitude motions, whose wheel slid along the axle in response to external stimulation. After impregnation with Zn2+ ions, the relative locations of two zinc active sites (crown-ether coordinated Zn(II) and bipyridine coordinated Zn(II)) are endowed with great flexibility to fit the conformational transformation of an organophosphorus agent during the hydrolytic process. Notably, the resulting self-adaptive binuclear zinc center in a crown-ether-threaded COF network is endowed with a record catalytic ability, with a rate over 85.5 µM min-1 for organophosphorus degradation. The strategy of synthesis for porous artificial enzymes through the introduction of mechanically bound crown ether will enable significant breakthroughs and new synthetic concepts for the development of advanced biomimetic catalysts.

6.
Natl Sci Rev ; 8(5): nwaa155, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691632

RESUMO

The rapid, complete, targeted and safe treatment for tumors remains a key issue in cancer therapy. A novel treatment of solid tumors by supramolecular photocatalyst Nano-SA-TCPP with the irradiation of 600-700 nm wavelength is established. Solid tumors (100 mm3) can be eliminated within 10 min. The 50-day mouse survival rate was increased from 0% to 100% after the photocatalytic therapy. The breakthrough was owing to the cell membrane rupture and the cytoplasmic loss caused by photogenerated holes inside cancer cells. The porphyrin-based photocatalysts can be internalized in a targeted manner by cancer cells due to the size selection effect, without entering the normal cells. The therapy has no toxicity or side effects for normal cells and organisms. Moreover, the photocatalytic therapy is effective for a variety of cancer cell lines. Because of its high efficiency, safety and universality, the photocatalytic therapy provides us with a new lancet to conquer the tumor.

7.
Sensors (Basel) ; 21(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34640965

RESUMO

Ultrasonic guided wave monitoring is regularly used for monitoring the structural health of industrial pipes, but small defects are difficult to identify owing to the influence of the environment and pipe structure on the guided wave signal. In this paper, a high-sensitivity monitoring algorithm based on adaptive principal component analysis (APCA) for defects of pipes is proposed, which calculates the sensitivity index of the signals and optimizes the process of selecting principal components in principal component analysis (PCA). Furthermore, we established a comprehensive damage index (K) by extracting the subspace features of signals to display the existence of defects intuitively. The damage monitoring algorithm was tested by the dataset collected from several pipe types, and the experimental results show that the APCA method can monitor the hole defect of 0.075% cross section loss ratio (SLR) on the straight pipe, 0.15% SLR on the spiral pipe, and 0.18% SLR on the bent pipe, which is superior to conventional methods such as optimal baseline subtraction (OBS) and average Euclidean distance (AED). The results of the damage index curve obtained by the algorithm clearly showed the change trend of defects; moreover, the contribution rate of the K index roughly showed the location of the defects.


Assuntos
Ondas Ultrassônicas , Ultrassom , Algoritmos , Análise de Componente Principal
8.
Adv Mater ; 32(32): e1907746, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32596838

RESUMO

A highly crystalline perylene imide polymer (Urea-PDI) photocatalyst is successfully constructed. The Urea-PDI presents a wide spectrum response owing to its large conjugated system. The Urea-PDI performs so far highest oxygen evolution rate (3223.9 µmol g-1 h-1 ) without cocatalysts under visible light. The performance is over 107.5 times higher than that of the conventional PDI supramolecular photocatalysts. The strong oxidizing ability comes from the deep valence band (+1.52 eV) which is contributed by the covalent-bonded conjugated molecules. Besides, the high crystallinity and the large molecular dipoles of the Urea-PDI contribute to a robust built-in electric field promoting the separation and transportation of photogenerated carriers. Moreover, the Urea-PDI is very stable and has no performance attenuation after 100 h continuous irradiation. The Urea-PDI polymer photocatalyst provides with a new platform for the use of photocatalytic water oxidation, which is expected to contribute to clean energy production.

9.
J Colloid Interface Sci ; 515: 27-31, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29328941

RESUMO

Here, we report a facile salt-assisted direct liquid-phase exfoliation method for mass production of MoS2 nanosheets. We choose organic solvent isopropanol (IPA) as exfoliation media and potassium ferrocyanide, potassium sodium tartrate, or sodium tartrate as salt, the assistant. The selected salts show universal and efficient assistant effect for the exfoliation of MoS2 in IPA. Especially, potassium ferrocyanide (K4Fe(CN)6) can enhance the exfoliation efficiency up to 73 times and a dispersion of MoS2 nanosheets with concentration as high as 0.240 mg mL-1 can be easily obtained in IPA-K4Fe(CN)6 system. Transmission electron microscopy, atomic force microscopy (AFM), and Raman spectroscopy show that bulk MoS2 has been successfully exfoliated into mono- to few-layer MoS2 nanosheets. AFM analysis indicates that nearly 60% flakes are monolayer in MoS2 dispersion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...